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ABSTRACT

This report presents two further applications of very elementary formulae
of approximate differentiation. The first is a new derivation in a somewhat
sharper form of the following theorem of V. M. OlovyaniSnikov:

Let Nn(n 2 2) be the class of functions g(x) such that g(x),

g'(x),...,g(n)(x) are ; 0, Dbounded, and non-decreasing on the half-line
~® < x < 0. A special element of N, is

A
o
*

g (x) =0 if -®< x < =1, g (x) = (1+x)" if =1 < x

If g(x) € Nn is such that

9(0) < g0 =1, ¢'™(0) < ¢{™(0) = n1

then

( (v)

(1) sV 0 <g, '(0) for vV =1,...,n-1 .

Moreover, if we have equality in (1) for some value of Vv, then we have there
equality for all v, and this happens only if g(x) = g,(x) in (=-=,0].

The second application gives sufficient conditions for the
differentiability of asymptotic expansion (Theorem 4}.

AMS(MOS) Subject Classifications: 41A17, 65D25.
Key Words: multiply monotone functions, asymptotic expansions.

Work Unit Number 3 - Numerical Analysis and Computer Science

sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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SIGNIFICANCE AND EXPLANATION

\J z

This report presents two further applications of very elementary formulae
of approximate differentiation. The first is a new derivation in a somewhat

sharper form of a theorem of V. M, Olovyanighikov on multiply monotone b.

functions. The second applications gives sufficient conditions for the

differentiability of asymptotic expansions.
d“\

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




TWO APPLICATIONS OF APPROXIMATE DIFFERENTIATION FORMULAE:

AN EXTREMUM PROBLEM FOR MULTIPLY MONOTONE FUNCTIONS

AND THE DIFFERENTIATION OF_ ASYMPTOTIC EXPANSIONS

I. J. Schoenberg

1. Introduction. Approximate differentiation formulae are admirably

suited for the solution of certain extremum problems of the Landau-Kolmogorov

type (see [S] and [1]). Here we deal with two unrelated further applications.

In Part I we establish Theorem 1 below due to V. M. Olovyaniénikov [4}

(see R. P. Boas' review in Math. Reviews 13, p. 17. I owe to Boas the
reference to this paper). We restate Theorem 1 as Theorem 2 in terms of
multiply monotone functions on the positive real axis, at the same time
showing the unicity of the extremizing functions (§3). 1In §4 we use a result
from R. E. Williamson'’s paper [7] to derive a second proof of Olovyanisnikov's
theorem.

Part II deals with our second topic. We derive sufficient conditions for

the differentiation of asymptotic expansionse.

I. Multiply monotone functions.
S==ns=mt= =

————— =SS TEoEESsSIsRERER

2. Olovyaniénikov's theorem. Let Nn(n 2 2) denote the class of

functions g(x) defined on (-«,0] such that

(2.1) g(x), g'(x),...,g(n)(x) are > 0, bounded,

and non~-decreasing on (-«,0] .,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.




Here the first n functions are assumed absolutely continuous, while g(n)(x)

may not exist for a countable number of values of x. A special element of

Nn is the function

0 if = < x < -1 ,
(2.2) g,(x) = n
(1+x) if -1 < x

A
o
L ]

An extremizing property of this special function is stated in the
following

Theorem 1 (OlovyaniSnikov). If

(2.3) g(x) € Nn
and
(2.4) g0 < 9,0 =1, ¢ ¢ g{™w0) =1,

then

(2.5) g0 < g{M0) for v = 1,2,000m-1

To this we add now the following new unicity property of the extremizing
function gg(x):

Unicity theorem. If we have equality in (2.5) for some value of v,

then the equality holds for all v, and this happens only if

(2.6) g{x) = g,(x) in [-=,0] .

™~




The class N, seems to be the right setting for these remarkable
results. However, to carry out our new approach we prefer to pass from x
to =-x, writing f(x) = g(-x), and to state the following definitions.

Let Mn(n 2 2) denote the class of functions f(x), 0 < x < @, such
that
(2.7) -1 %) (x) (v = 0,...,n) are > 0, bounded,

and non-increasing on [0,®) .

This is the class of n-times monotone functions on [0,®). A special element

of Mh is the function
(2.8) £,00) = (1=x)] , (xg0) ,

where ¢t

+ = mBX(t,O) L

We may now restate all previous results as follows.

Theorem 2. If

(2.9) f(x) e M
n

and

(2100 £00) < £,000 = 1, (0"t ™(0) ¢ -n"e{M0) = 1,

then

21 =0"£0) ¢ 1) 0) for v = 1,2,000mm1 1




Moreover, if we have equality in (2.11) for some value of Vv, then equality

holds for all Vv, and this happens only if

(2.12) f(x) = f*(x) E [0,") .

3. A _proof of Theorem 2. We use a formula of approximate

v
differentiation that expresses f( )(0) as an appropriate linear combination

of the n data

(3.1) £(0), £(1), £°(1),000,£(072) (1)

and is such that the formula should be exact for polynomials of degree n - 1.
Such a formula can easily be obtained from Peano's theorem (see [2, §3.7]),
but in this case we may derive it directly as follows.

Taylor's formula gives the identity

n-1 k n 1
= (=1 (k) (-1) n-1_(n)
(3.2) £0) = ] S (W oyt £ Mixax .
0 0

Applying this to f(v)(x), rather than f(x), and for n - v in place of
n, we obtain

n-1 k-v n-v 1

(v) _ (=1) (k) (-1) n-v=-1 _(n)

(3.3) £ '(0) = g G £ M T fo £ (x)ax .

In view of the data (3.1) we eliminate the unwanted term f(n-1)(1) between
these relations: Multiplying (3.2) by =(n-1)(n-2)ees(n-v), and (3.3) by

v
(-1) , and adding them, we finally obtain the identity




—

l v=1

-1)e™M0) = Tﬁ?ﬁ}%fl tro) - J Ry i
k=0
(3.4)
n=2 1
=3 A o v [ ke M oow |
k=v 0
where
(305) Ak = (:lf;::;l - (k)‘(\l))l >0 for k=v, \""1,000,“-2 11;
and
»
(3.6) K{x) = T;:%:TTT xn~v-1(1_xv) >0 in (0,1) . .

Notice that the second sum on the right side of (3.4) is absent if v = n-~1t.
All the desired conclusion follow almost immediately from the identity
(3.4) in view of the positivity of the A, and K(x).

(1) If £(x) = £,(x) = (1-x):, then (3.4) gives

n! e (- v,_(v) =
=S £, (0)
(3.7)
(n-1)1 vi1 nEZ I1
— {1 + o} + 0 + ni K(x)dx .
(n=v=1)1 k=0 K=V 0

On the other hand, if f(x) € Mn and satisfies (2.10), then (3.4) and (3.7)

show that
) v=1 n=2 1
-1 0y ¢ 7&%5}%%; {1+ ] ol+ § 0+n [ K(x)ax
k=0 k=v 0
(3.8)
v_{(v)

=g, o),

L R - - r—mna— ——— s -
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establishing (2.11).
(ii) wWhen does the equality sign hold in (3.8)? 1In view of (3.4) and
(2.10) this will be the case if and only if the following conditions are

simultaneously satisfied:

(3.9) £(0) = 1, £(1) = £(1) =o,om £(072) 4y = o ,
and
(3.10) (-1)Pe(™) (%) = n1 almost everywhere in (0,1) .

Now (3.10) shows that f(x) is a polynomial of degree n, while the

equations (3.9) show that it must be of the form

£(x) = (1-x)"" 1(1-ax) .

Finally, again (3.10) shows that we must have a = 1. Thus the identity
(2.12) is established.
4. é-gggggg_ggggg_gg_zgggggg_g; Here we use a fundamental result from

Williamson's paper [7] which we state as

Lemma 1. The class Mn = {f(x)} defined by (2.7), is identical with the

class of functions f(x) admitting a Stieltjes integral representation

(4.1) £(x) = [ (1-xt)] da(t)
0

where

[~y

o

e




(4.2) a(t) is non-decreasing and bounded on (0,®), a(0) = 0 ,
and
o
(4.3) o= thda(t) <= .
"o

There is a close relationship between the discontinuities of the monotone
functions a(t) and £™(x) : t = 1 > 0 is a discontinuity of a(t) if and
only if x = 1/t is a discontinuity of £M (%), However, f£{™M(x) is
continuous at x = 0, hence £(®(0) = £(™)(0+).

The derivatives f(v)(x) are obtained by differentiation of (4.1) with

the result that

(4.4) -1 (0 = c. v/ (1=xt) 7 Vt'aa(t), (v = 0,000,m)
70

where cn’v = n{n=1)ses(n=-v+1), cn,O = 1, and in particular

(4.5) (-1)vf(v)(o) = cn v f tvda(t)' (\) = 0,...,n) »
’

0
We obtain the special function f£_(x) = (1-x): from (4.1) if

0 if 0 ¢

A
ct

A
-
-

(4.6) a(t) = a,(t) = {
1 if t >

v
-
-

and therefore

v_(v)
(407) ("1) f. (0) = Cn v . 1' (\) = 0,-..,n) .

’
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It follows that in terms of a(t) the assumptions (2.10) are equivalent to

the inequalities

©© [ BN
(4.8) ug=J av) g1, w = tlaaw) g1

0 0
to establish Theorem 2 we are to show that (4.8) imply the inequalities

(4.9) u, = [ tlaace)
0

1 for v =1,2,eee,n=1

[P

This follows immediately from a known property of the moments s

(4.10) The sequence uv(v = 0,ee0,n) 1is logarithmically convex,

which means that

(4.11) the sequence log uv(v = 0,eee,n) 1is convexe.

For completeness we sketch a proof of the property (4.11): It amounts to

proving the inequalities

(4.12) (u ) < u“_1uv+1 for v = 1,ooo’n-1 .

<
L}

It is clearly sufficient to establish (4.12) for the case when a(t) is a

non-decreasing step-function with a finite number of discontinuities, in which

case

m
\
M, = jZ1 ebgr 0 ¢ by < by <ere< b, all ¢y >0




By Cauchy's inequalities we have !

=
N
L}

m m 4 - 1
(5 c'b\{)z - c/_zb(,v 12, c/'zb(.\»+1)/2)2
1 J 1 3 3

T oov=1 T v
. < Qe )(} =
1

establishing (4.12).

Let us finally establish the last sentence of Theorem 2: We assume that i.

we have the equality sign in (4.9) for some value of v, and we are to show

Sk ih 2

that a(t) = a+(t).

From the convexity property (4.11) the assumptions o < 1 and un 1,

A

and the equation uv =1, for some Vv, evidently imply that

i
-] v i"i
(4.13) w, =/ thda(e) =1 for v =10,.00,n , .
0 i
and we are to conclude that
0 if 0 <ct<1 ,
(4.14) a(t) = a,(t) =
1 if > 1 .
Proof: We distinguish two cases depending on the parity of n. If n
is even we observe that (4.13) imply that
®  .n n oy '
J (=) aa(t)y = § -1 () =0 .
0 0 v

T

The integrand being positive if ¢t # 1, this implies (4.14). f n is odd

we similarly conclude that o

Tl M | . - . B SO R s e o e a . oy e c . ML ., ene
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[ t1-0)™ Taa(e) =0 .
0

Again, the integrand being positive if t # 0 and t ¥ 1, we conclude that
(0,1) and (1,®) are intervals of constancy of a(t). Thus a(t) is a
step-function having non-negative jumps A, and Ay at t=0 and t =1,
respectively. Now (4.13), for v = 0,1, show that Ay + Ay = 1, Ay =1,

hence Ay = 0 and (4.14) is established.

II. égxggtotic Exggggions

S. The differentiation of asymptotic estimates. Theorem 3 below was
R R R S S I N RN RIS I SIS IS I I
suggested by a theorem of Hardy-Littlewood-Landau in a version due to Widder
[6, 223]. This theoréh is as follows:

Let f(x) € C2(0,°) such that

24
(A1) f(x) ~ ;(— (x + =) v
" -3

(ay) £"(x) = 0(x 7)
Then

, a,
(C) £f'(x) ~ - _E o

x

Widder proves it elegantly by applying one of Wiener's Tauberian
theorems.
This result becomes more elementary if we modify its statement by

replacing the assumption (A1) by the stronger assumption

-10=

e T eer—




which is stronger than (C).

state our

Theorem 3. Let f£(x) € C'(0,®), (n 3 2),

a .
; (Ay") £ = L+ :% fox?
: X
We shall show that (A,') and (A;) imply that
a
' (c') £ -2+ 0x ),
X

This modified theorem also generalizes to higher derivatives and we may

and let ug assume that

a a

1 n -n=1
(5.1) £x) = —+ Z+ot —+0(x "),
X b4
(5.2) £(M) (x) = o(x"2 )
Then
a 2a (n=1)a
(cy) f'(x)=-—;-—3-2--...- n“‘+0(x“‘)
X X X
2a (n=2)(n-1)a
(Cz) f"(x) = ‘3_ +oeoot n n-2 + 0( n-1)
. X ' X
' (n=1)1a
(€,_q) 2V o =)™ — v 0™
X

In words: The assumption (5.2) insures that we can differentiate

formally the asymptotic estimate (5.1) n-1 times.

-11=

o dail:

-

e e e a .
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Proof: Writing as usual (a)_ = a(a+l1)eec(a+n-1), 1let us establish the

n
estimate
(1), a (n=k) a
(k) k k1 _q kK k n-=k -n=1
(ck) £ (x) (-1) xk+1 +Toeoet ( 1) _'_——"xn + 0(x ) ’

for k= 1,.e.,n~1, To obtain it we need a formula for approximate
differentiation of the form
n=-1

(0) = § B, (F(V) + R(F) .
0

(5.3) pt

Here the Av are appropriate numerical constants and R(F) is a linear

functional which is to vanish whenever F ¢ ﬂn_1. We do not need the values

of the Av' but only wish to clarify their existence: If

n=1
(5.4) P(x) = ) P(V)& (x), where P e w

’
0 n=-1

is Lagrange's interpolation formula, then also

n=1
P = 1 roonl¥eo
0
and in particular
(k) n2 (k) (%)
P l(0) = § P(V)L " (0), whence A =& °(0) .

0

By Peano's theorem (see [2, §3.7]) we may rewrite (5.3) as

n=-1 n=-1 (n)
0y = J arv) + [ x)Fr™(eiae .
o ¥ 0

gtk
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Here K(x) is a kernel that can be determined by Peano's theorem, but whose

explicit form we do not need. Applying (5.5) to the function F(t) = f(xrt)

we obtain the identity

n-1 n-1

gl {n)

' (5.6)
0 0

To simplify notations we use the symbols

n-1 .- a a
A(x;£) = Z Avf(x+v) and ¢(x) =
0 x

Applying (5.6) to our function £(x) = ¢(x) + 0(x~1)

obtain that

1

e XN = dx + 0™

(5.7)

However, if we apply (5.6) to the function v (x) we obtain

1 (%) 1

e = dse) + 0x ™Yy, or Axe) = ¢y + 0™

Substituting this into (5.7) we finally have

1

R (x) = WK () 4+ o™y

¢'%) (x) which are 0(x™'). This establishes (Cy).

By way of a counter-example we consider the function

(x) = [ A E(x+v) + [ K(E)E T (x+t)dt, (x> 0)

and using (5.2), we

and this reduces to (Ck) if we incorporate with the remainder those terms of

DRRSTNRINEDITS. © gy <o ¥ SN o0t T s e W e kiR I~ - =+ - -

S

=




n
£(x) = avx-v + (sin /™Y

1
Observe that it satisfies all assumptions of Theorem 3 with the exception of
(5.2). It is likewise evident by differentiations that none of the estimates
( Ck) hold.
€. The differentiation of asymptotic expansions. Let £(x) (x> 0)

admit the asymptotic expansion

a a

1 n
(6.1) f(x) 'x_+.co+—n+ooo as K + @ .
x
This means that the estimates
a1 an -n-1
(602) f(x) = == teset ™ + O(X )
x n

X

hold for all values of n = 0,1,.s¢ . It is even sufficient for (6.2) to hold

for arbitrarily large values of n.

-]
Let us assume that f£f(x) € C (0,*) and find conditions which will insure
that the expansion (6.1) may be differentiated any number of times leading to

the expansion

(1), a, (n-k). a
(k) . ek _ k1 L4k k n-k
(6.3) £ (x) ~ (=1) oo teeot (=1) - feee (k2 1)

A necessary condition for this to hold is that we have

(6.4) £0)(x) = 0(x™™ ') for n = 1,2,00. .

u-a-nl!!llllIIlIlll...l'....I'.ll.l.-".-.lFlllIlllllIll!!lnl----,..,.....
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g As an application of Theorem 3 we will show not only that the conditions (6.4) 1
are also sufficient, but that it is already sufficient that (6.4) should hold i
for some arbitrarily large values of n. This we state as

Theorem 4. Let £f(x) € c“(o,w) admit the expansion (6.1). Then (6.1)

may be differentiated leading to (6.3) for all k, provided that the estimate

1

£ = 0™ if new ,

(6.5)

holds for some infinite set N of integers.

Proof: We assume (6.1), and (6.5) for n € N. However, (6.1) implies
that (6.2) holds. Let k < n-1. By Theorem 3 (6.2) and (6.5) imply that we }4

can differentiate (6.2) leading to

—— e em ey o

(1), a (n=k) a 3
(k) k _ k1 _yk k n-k -n-1 |
(6.6) £ (x) = (=1) xk+1 Foeot (=1) ————;;———— + 0(x ) 4

Since n € N may be chosen arbitrarily large, this establishes the asymptotic
expansion (6.3), proving the theorem.
For other conditions insuring the differentiability of asymptotic f

expansion see (3, theorem 3 on p. 542].
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ABSTRACT (continued)

()" if -1 <x<o0 .

g.{x) =0 if -» <x < -1, g, (x)

If g(x) ¢ Nn is such that

g(0) < g, =1, g™ (0 < g™ (0) = n!

then

(v)

gV <q!

(L) (0) for v=1,...,n-1

Moreover, if we have equality in (1) for some value of Vv, then we have there
equality for all v, and this happens only if g(x) = g,(x) in (-=,0].

The second application gives sufficient conditions for the differentiability
of asymptotic expansion (Theorem 4).
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